Pharmacotherapy for Pain Disorders

AOCPRM
Auckland
23 November 2018

Dr John Alchin, FFPMANZCA
Pain Medicine Specialist
Pain Management Centre, Burwood Hospital,
Christchurch, NZ

Definition of pain
(IASP, 1979)

“Pain is an unpleasant sensory & emotional experience associated with actual or potential tissue damage, or described in terms of such damage”

NB: “Unpleasant” hardly captures the extreme suffering of some chronic pain
Figure 8 (page 1836): Leading causes of age-standardised YLD rates globally, 2017

<table>
<thead>
<tr>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LBP</td>
<td>LBP</td>
</tr>
<tr>
<td>2. Headache</td>
<td>Headache</td>
</tr>
<tr>
<td>3. Depression</td>
<td>Diabetes</td>
</tr>
<tr>
<td>4. Fe Deficiency</td>
<td>Age-related Hearing Loss</td>
</tr>
<tr>
<td>5. Diabetes</td>
<td>Depression</td>
</tr>
<tr>
<td>6. COPD</td>
<td>Neonatal Disorders</td>
</tr>
<tr>
<td>7. Age-related Hearing Loss</td>
<td>Drug Use Disorders</td>
</tr>
<tr>
<td>8. Anxiety</td>
<td>Visual Loss</td>
</tr>
<tr>
<td>9. Neck Pain</td>
<td>COPD</td>
</tr>
<tr>
<td>10. Blindness</td>
<td>Other Musculoskeletal</td>
</tr>
<tr>
<td>11. Other Musculoskeletal</td>
<td>Neck Pain</td>
</tr>
</tbody>
</table>
Mechanistic Pain Descriptors 1 (IASP)

Nociceptive Pain

Pain due to threatened, or actual, tissue damage, causing activation of normally functioning nociceptors.

• This is the nociceptive system functioning as intended.

There are 2 types:

• **High intensity stimulus** in the absence of inflammation, eg a foot put in an unexpectedly very hot bath – **protective** function

• **Low intensity stimulus** in the presence of inflammation, eg sunburn – **healing** function
Mechanistic Pain Descriptors 2

Neuropathic Pain

Pain caused by a lesion or disease of the somatosensory nervous system.

- **Central**
 - SCI pain;
 - MS related pain;
 - Post-stroke pain

- **Peripheral**
 - Radiculopathy / radicular pain, entrapment neuropathies
 - Post-herpetic neuralgia
 - Painful diabetic peripheral neuropathy
 - Chronic post-surgical neuropathic pain

Mechanistic Pain Descriptors 3

Nociplastic Pain

(= “nociceptive plasticity,” i.e. pathological change in function of nociceptive pathways).

Pain characterized by clinical & psychophysical findings suggesting altered nociception, with:

- No evidence of actual or threatened tissue damage causing the activation of normally functioning nociceptors; and
- No evidence for disease or lesion of the somatosensory system.

Term introduced by IASP in December 2017
Mechanistic Pain Descriptors

• In nociceptive pain, the alarm is functioning as it should, warning the organism of problems, or potential problems, in the periphery.

• In contrast, neuropathic & nociplastic pain are “alarm” system problems, not problems with the peripheral tissues where the pain is felt. They are a “false alarm”.

Pain Management Centres deal with alarm problems
A nail gun backfired on builder Patrick Lawler, 23, on 6.1.05 while working in Breckenridge, a ski resort town in Colorado. The tool sent a nail into a piece of wood nearby, but Lawler didn’t realize a second nail had shot through his mouth. After the accident, Lawler had what he thought was a minor toothache and blurry vision. 6 days later, after painkillers and ice didn’t ease the pain, he went to a dental office.
“A builder aged 29 came to the accident and emergency department having jumped down on to a 15 cm nail. As the smallest movement of the nail was painful he was sedated with fentanyl and midazolam. The nail was then pulled out from below. When his boot was removed a miraculous cure appeared to have taken place. Despite entering proximal to the steel toecap the nail had penetrated between the toes: the foot was entirely uninjured.” Fisher JP et al. BMJ 1995;310:70

International Classification of Diseases version 11 (ICD-11)

MG30 Chronic pain

persists or recurs for longer than 3 months.

MG30.0 Chronic primary pain

- chronic pain in one or more anatomical regions, characterized by:
- significant emotional distress (anxiety, anger/frustration or depressed mood); or
- functional disability (interference in ADLs & social roles).
- Chronic primary pain is multifactorial: biological, psychological and social factors contribute to the pain syndrome.
International Classification of Diseases version 11 (ICD-11)

MG30.0 Chronic primary pain

- MG30.00 – chronic primary visceral pain
- MG30.01 – chronic widespread pain
- MG30.02 – chronic primary musculoskeletal pain
- MG30.03 – chronic primary headache/orofacial pain

International Classification of Diseases version 11 (ICD-11)

- MG30.1 Chronic cancer related pain
- MG30.2 Chronic post-surgical or post-traumatic pain
- MG30.3 Chronic secondary musculoskeletal pain
- MG30.4 Chronic secondary visceral pain
- MG30.5 Chronic neuropathic pain
- MG30.6 Chronic secondary headache or orofacial pain
International Classification of Diseases version 11 (ICD-11)

- **MG30.1** Chronic cancer related pain
- **MG30.2** Chronic post-surgical or post-traumatic pain
- **MG30.3** Chronic secondary musculoskeletal pain
- **MG30.4** Chronic secondary visceral pain
- **MG30.5** Chronic neuropathic pain
- **MG30.6** Chronic secondary headache or orofacial pain

Chronic widespread musculoskeletal pain could be either:
- **MG30.3**: Chronic secondary musculoskeletal pain – nociceptive pain, eg RA; or
- **MG30.01**: Chronic widespread pain – nociplastic pain, eg **fibromyalgia**

Chronic musculoskeletal low back pain could be either:
- **MG30.3**: Chronic secondary musculoskeletal pain – nociceptive pain, eg Ank Spon, or pathological #; or
- **MG30.02**: Chronic primary musculoskeletal pain – **nociplastic low back pain**

Chronic large bowel visceral pain may be due to:
- **MG30.4**: Chronic secondary visceral pain – nociceptive pain, eg Ulcerative Colitis; or
- **MG30.00**: Chronic primary visceral pain – nociplastic pain, eg **irritable bowel syndrome**
Pharmacotherapy

Moore A, Derry S, Eccleston C, Kalso E: “Expect Analgesic Failure; Pursue Analgesic Success”. *British Medical Journal*; BMJ 2013;346:f2690 (Published on-line 3 May 2013; print edition 08.06.13) – Doi: http://dx.doi.org/10.1136/bmj.f2690

See also R. Andrew Moore:

Evidence for analgesic efficacy in 4 types of pain

(“success” = 50% or more pain reduction in 50% or more of those randomised to active drug)

- **Acute postoperative pain** – only 4 of 10 analgesics.
- **Acute migraine** – only 1 of 6 medications
- **Chronic musculoskeletal pain** (osteoarthritis, chronic low back pain, fibromyalgia, ankylosing spondylitis) – none of 19 medications
- **Neuropathic pain** (painful diabetic neuropathy, post-herpetic neuralgia) – none of 9 medications

Analgesia not normally distributed

“Pain relief is not normally distributed, but usually bimodal, being either very good (> 50%) or poor (< 15%).”

That is, any given analgesic tends to either:

- Work quite well (but only in a small minority of patients – 10-15%);
- Not work at all (in 85-90% of patients).
Fig. 1 Individual changes in pain over 14 weeks of treatment with pregabalin 450 mg in 200 patients with fibromyalgia

Responders vs Non-Responders

Responders (a minority)

- “success is often achieved within the first 2 weeks or so of treatment or not at all, & ... tends to last.”

- “Those who get better (responders) do well: . . . people who respond experience improvements in **fatigue**, **depression**, and **sleep** ... & general measures of **function** and **quality of life**, including **ability to work**.”

Non-responders (the majority)

“have none of these benefits.”
Minimise Side-Effects

An important advantage of this “responder analysis” approach to assessing analgesic efficacy is that it minimises patient exposure to adverse drug effects:

- In the (likely) event of analgesic trial failure, “patients without benefit should be exposed to no risk, because the drug is stopped; only effective drugs should continue to be prescribed.”

- On the other hand, “With success, considerable benefits in terms of pain relief, sleep, fatigue, depression, function, and quality of life, are balanced against rare risk of serious harm.”

NP – Strong Recommendations – 1st-Line

<table>
<thead>
<tr>
<th></th>
<th>Dose (mg/day)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclic ADs</td>
<td>25-150</td>
<td>3.6</td>
</tr>
<tr>
<td>Nortriptyline (fewer side-effects than amitriptyline)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabapentin</td>
<td>1200-3600</td>
<td>7.2</td>
</tr>
<tr>
<td>Pregabalin</td>
<td>300-600</td>
<td>7.7</td>
</tr>
<tr>
<td>Duloxetine</td>
<td>60-120</td>
<td>6.4 (not funded)</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>150-225</td>
<td>6.4</td>
</tr>
</tbody>
</table>

i.e., 1st-line pharmacotherapy for NP:

- Nor-adrenergic anti-depressants:
 - TCAs,
 - SNRIs
- Gabapentinoid anti-convulsants

Weak Recommendations – 2\(^{nd}\)-Line

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (mg/day)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tramadol</td>
<td>200-400</td>
<td>4.7</td>
</tr>
<tr>
<td>Capsaicin</td>
<td>8% patch</td>
<td>10.6</td>
</tr>
<tr>
<td>(PNP)</td>
<td>(30-60 mins every 3 months)</td>
<td></td>
</tr>
<tr>
<td>Lignocaine</td>
<td>5% patch</td>
<td></td>
</tr>
<tr>
<td>(PNP)</td>
<td>(Max: 3 patches, up to 12 hours/day)</td>
<td></td>
</tr>
</tbody>
</table>
| | (Demoted from 1\(^{st}\)-line due to “weak quality of evidence”)

Weak Recommendations – 3\(^{rd}\)-Line

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (mg/day)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong Opioids</td>
<td>SR 180 mg Meq</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>individual titration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13 trials in PNP used 10-120 oxycodone or 90-240 morphine; 10/13 +ve; max effectiveness 180mg morphine equivalent)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(demoted from 1(^{st}) or 2(^{nd}) line – abuse potential, & deaths, etc)</td>
<td></td>
</tr>
<tr>
<td>Botulinum A</td>
<td>50-200 units</td>
<td>1.9*</td>
</tr>
<tr>
<td>(PNP)</td>
<td>(Sub-cut every 3 months)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(*4 small RCTs; but one large unpublished RCT –ve)</td>
<td></td>
</tr>
</tbody>
</table>
Recommendations against use:
(Negative Trials &/or Safety Concerns)

1. **Weak recommendations against use:**
 - **Cannabinoids** (“negative results, potential misuse, diversion, & long-term mental health risks”)
 - **Valproate**

2. **Strong recommendations against use:**
 - **Levetiracetam**
 - **Mexiletine**

Medication Combinations

TCA + Gabapentinoid:
- Nortriptyline + gabapentin (*The Lancet*; 10.10.09, pp 1252 – 61)
- Imipramine + pregabalin (*Pain*, May 2015, pp 958-66)

SNRI + Gabapentinoid:
- Duloxetine + pregabalin (*Pain*, July 2016, pp 1532–1540)

Opioid +
- Morphine + nortriptyline (*Pain*, August 2015, pp 1440-48)

See also:
The limited role of Opioids

1. Lack of evidence of long-term efficacy in Chronic pain
2. Tolerance and Physiological Dependence
3. Opioid Use Disorder
4. Risks of accidental overdose (US “opioid epidemic / crisis”)
5. Opioid-Induced Hyperalgesia
6. Difficult Withdrawal from Opioids
BPMC Opioid Guidelines (unchanged since 1999):

1. Don’t normally use strong opioids for chronic non-cancer pain
2. If we do, it’s normally methadone
3. Never prescribe at first visit – initiate opioids only after discussion at weekly case conference – IDT decision
4. We do not endorse the prescription of opioids for patients with a diagnosis of SUD – under A & D

Opioid Contract

Consider a signed opioid contract with the patient:

1. It is a trial – if it is not effective, it will be stopped. Starting a patient on morphine does not morally oblige us to continue it:
2. Patients don’t tell us what drug, & how many mg, to prescribe – the law specifies that that is our job.
3. Evidence of diversion / abuse → stop
4. “Effectiveness” normally needs an objective measure, e.g. improved function. E.g. a patient reporting that their pain “is much better, but it’s not good enough yet, because I’m still in agony & disabled by pain. So I need more” – is not evidence of efficacy, & thus not grounds for perpetual dose escalation
5. 100mg Morphine Equivalent / day will not be exceeded – risks, & lack of efficacy
6. No replacements for lost, eaten, stolen, or transmigrated scripts.
7. Random Urine Drug Screens – to see what is, & isn’t, present
8. One prescriber, one dispensing pharmacy
Fallacies, often implicit / sub-conscious, driving opioid prescribing & escalation:

“If all else fails, use morphine” because:

1. **It is our strongest analgesic, our gold standard. Wrong**: it *is* helpful for severe nociceptive or inflammatory pain (eg, post-op, post-traumatic), & in terminal malignant pain. But it is not the gold standard for neuropathic or nociplastic pain.

2. **The Fairy-Tale Fallacy (“they all lived happily ever after”): “There must be a fix.” Wrong**: Need to grapple with the Problem of Evil.

De-prescribing Opioids

- Frank JW et al: “Patient Outcomes in Dose Reduction or Discontinuation of Long-Term Opioid Therapy: Systematic Review”; *Ann Int Med*, 2017; doi:10.7326/M17-0598; published on-line 18.7.17

- Geller AS: “Patient & Public Safety Maximized by Rapid Opioid Taper”; *JAMA Internal Medicine*, June 2017; 895-6

- Darnall BD et al: “Patient-Centered Prescription Opioid Tapering in Community Outpatients With Chronic Pain”; *JAMA Internal Medicine*, online 19/2/18
Cannabinoids

- 91 publications with 104 studies were eligible (n = 9958 participants), including
 - 47 RCTs
 - 57 observational studies.
- 48 studies examined neuropathic pain,
- 7 studies examined fibromyalgia,
- 1 rheumatoid arthritis,
- 48 other CNCP (13 MS-related pain, 6 visceral pain, & 29 samples with mixed or undefined CNCP)

- 30% reduction in pain = 29% (cannabinoids) vs 26% (placebo),
- Number needed to treat to benefit (NNTB) for a 30% pain reduction: 24;
- 50% reduction in pain, 18% vs. 14%; no significant difference.
- Pooled change in pain intensity equivalent to 3mm on a 100mm visual analogue scale greater than placebo

- all-cause AEs = 81% vs. 66%;
- number needed to treat to harm (NNTH): 6.
- No significant impacts on physical or emotional functioning,
- Low-quality evidence of improved sleep, and patient global impression of change.

Conclusions

- “Evidence for effectiveness of cannabinoids in CNCP is limited.”
- “NNTB are high, and NNTH low, with limited impact on other domains.”
- “It appears unlikely that cannabinoids are highly effective medicines for CNCP.”

CONCLUSIONS of recent SRs

1. Weak evidence for efficacy of cannabinoids in neuropathic pain
2. No or insufficient evidence of efficacy in:
 - Chronic musculoskeletal pain
 - Headache disorders
 - Chronic visceral pain
 - Cancer pain
3. Few & low quality studies, providing insufficient evidence to gain FDA approval
4. Issue of adverse effects

Whence the pressure for “medicinal cannabis”?