How chronic kidney disease and haemodialysis influence stroke outcome.

Shrikant D Pande
Rehabilitation medicine
Changi General Hospital
Singapore
Julie Morris: Reader, Statistics, University of Manchester UK

Background:

* Stroke patients with underlying chronic kidney disease (CKD) and those on dialysis have complex rehabilitation needs.
comorbidities

- HTN
- DM
- PVD
- Amputations

Common issues

- Unstable BP: extremes of HTN or post dialysis hypotension.
- Sugars: labile: as renal function deteriorates: insulin requirement varies.
Sepsis and other issues

* Prone for infections
* Fistula related problems.

Rehab goals

* Patients on HD: post discharge need to for HD in satellite centres.
* Minimum requirement: sitting tolerance for 4 hours.
* Based on progress: further rehab goals are set.
The number of individuals undergoing dialysis is steadily increasing. Patients undergoing dialysis are susceptible to vascular complications including stroke [1].

The kidney and brain both “require continuous and stable high blood flow in a low vascular resistance system”

These two organs are supplied by “strain arterioles”. Owing the branching nature of these arterioles, they are susceptible to blood pressure changes [2, 3].
Strain arteriole

The arterial endothelium and tunica media are adversely affected in patients with CKD.

These patients are prone to cerebrovascular insults [3, 4].

Further, in patients on haemodialysis (HD), the baroreceptor reflex is altered owing to deranged autonomic function [5].

This results in poor tolerance to fluid and BP changes during dialysis [6].

HD can also result in myocardial stunning, leading to inadequate cerebral perfusion, which may lead to ischaemic brain injury [7].
This study aimed to review the post-stroke survival and functional outcomes following rehabilitation in patients with CKD (stages G3b, G4, G5) and dialysis.

Methods

- retrospective analysis 37 stroke patients
- with underlying CKD (stages G3b, G4, G5; n = 30), and those on dialysis at the time of stroke (n = 7)
- The follow-up period ranged from 20 to 93 months
- Singhealth IRB approval
Patients with CKD stages G3b, G4, G5 (based on the Kidney Disease: Improving Global Outcomes (KDIGO) staging)
- Those on haemodialysis, or peritoneal dialysis at the time of stroke diagnosis

Inclusion Criteria: Stroke in Patients With

- Previous known strokes
- Incomplete follow-up records
- Those with normal renal function, acute kidney injury, and CKD stage G1, G2, G3a.

Exclusion Criteria
37 patients met the selection criteria. Of which 30 had CKD (stages G3b, G4, G5). 7 were on dialysis at the time of stroke. Follow up duration of 56 months (20-93).

23 had Partial anterior circulation stroke
8 had posterior circulation stroke
6 had total anterior circulation stroke of which 3 had haemorrhagic transformation.

The mean values of eGFR on admission was, 21.3 (5-44), and haemoglobin 11.9 (9-18).

urea 12.1 (3.8-26)
albumin 29.9 (15-39).
The mean age of patients was 64.7 (36-87) years
* 16 (44%) men
* 73% (27) had DM.
* The mean duration of hospitalisation: 28 days (4-77).

A significant decrease was observed from the time of admission [6 (2-19)] to the time post discharge [4 (1-17)] (p<0.001; Wilcoxon signed rank test)
FIM motor score

* increased significantly from the time of admission [31 (13-87)] to the time of discharge [50.5 (13-91)]
 (p<0.001; Wilcoxon signed rank test)

FIM cognition score

* Increased significantly from the time of admission [24.6 (5-35)] to the time of discharge [26.6 (5-35)]
 (p=0.046; Paired t-test).
results

* Median number of recurrent admissions were 6 (1-50)
* Median hospital-stay duration was 48 days (2-291).
* Older age, longer hospital-stay duration and lower eGFR were all significantly related to mortality (p<0.05).
* Lower haemoglobin levels showed borderline significance (p=0.051).

independent predictors of mortality

* Age
* Length of hospital-stay and
* Low haemoglobin: were found to have significant independent relationships with mortality. (multivariable Cox regression).
A cohort of n=37 patients with stroke admission dates ranging from June 2008 to February 2016 were followed up for a minimum period of 20 months (maximum 93 months). During the follow-up period 18 patients died.

Comparisons with the ‘normal’ group (stroke cohort with normal kidney function).
The CKD/ESRF cohort had a significantly higher mortality (p<0.001).
HR=3.5, 95% CI (2.1 to 5.8)
Murray et. al. concluded that the number of stroke events within the first month of initiation of HD increased by a factor of 7 [20].

This could be attributed to the decreased cerebral perfusion and the altered rate of blood flow [20, 21, 22].

Other factors contribute to an increased risk of stroke at dialysis initiation were advancing age, DM, HTN [18],

Patients receiving Erythropoietin [20].

Compared to the general population, patients on dialysis have about 10 times [19] increased risk of stroke.

20 to 30% being haemorrhagic strokes [23, 24])

Increased risk of haemorrhagic transformations and

with more hematoma volume in haemorrhagic stroke [25].
Eldehni et. al. concluded that dialysis performed at 0.5°C below a patient’s core temperature was associated with better hemodynamic stability and led to protection against white matter ischaemic changes [8].

Continuous, instead of intermittent dialysis, has also been suggested to reduce the incidence of brain injury [1].

Conclusion

Despite significant improvements in functional scores, survival remains poor in stroke patients with CKD and in those on HD.

The average hospital-stay duration and recurrent hospitalisations rate is higher compared to stroke patients without CKD.
* Morbidity and mortality in stroke patients with CKD and HD may be a result of the complications associated with the comorbidities rather than stroke itself.

* Community services which focus on preventing or addressing these issues may help reduce the recurrence of hospital admissions and hospital acquired infections.
Acknowledgements

References

Thank you