How, When and What-ifs of Transcranial Direct Current Stimulation for Tinnitus

Associate Professor Cathy M Stinear,
Department of Medicine

Dr. Giriraj Singh Shekhawat,
Research Fellow, Section of Audiology
Transcranial direct current stimulation (TDCS)

- Weak current can be used to polarise cortex
- Anode: depolarisation
 - Neurons are more likely to fire
- Cathode: hyperpolarisation
 - Neurons are less likely to fire
Is this safe?

- Neurologist screens for contraindications
- Potential adverse effects
 - Skin burns
- Common experiences
 - Mild itching or prickling skin sensation
TDCS

- Typical intensity: 1 – 2 mA
- Typical duration: 10 – 20 minutes
- Advantages over rTMS
 - Fewer contraindications
 - Portable
 - Simple
 - Inexpensive
Contents

- What we know?

- What we don’t know?

- What should be done?
Q1. What do we know?
Real Vs. Sham tDCS
Publications

<table>
<thead>
<tr>
<th>Studies</th>
<th>Location</th>
<th>Intensity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fregni et al 2006</td>
<td>LTA</td>
<td>1 mA</td>
<td>3 Minutes</td>
</tr>
<tr>
<td>Vanneste et al 2010</td>
<td>DLPFC</td>
<td>1.5 mA</td>
<td>20 Minutes</td>
</tr>
<tr>
<td>Garin et al 2011</td>
<td>LTA</td>
<td>1 mA</td>
<td>20 Minutes</td>
</tr>
<tr>
<td>Vanneste et al 2011</td>
<td>DLPFC</td>
<td>1.5 mA</td>
<td>20 Minutes</td>
</tr>
<tr>
<td>Vanneste & DDR 2011</td>
<td>DLPFC</td>
<td>1.5 mA</td>
<td>20 Minutes</td>
</tr>
<tr>
<td>Frank et al 2012</td>
<td>DLPFC</td>
<td>1.5 mA</td>
<td>30 Minutes</td>
</tr>
<tr>
<td>Shekhawat et al 2012</td>
<td>LTA</td>
<td>1 mA and 2 mA</td>
<td>10, 15, 20 Minutes</td>
</tr>
<tr>
<td>Faber et al 2012</td>
<td>DLPFC</td>
<td>1.5 mA</td>
<td>20 Minutes</td>
</tr>
<tr>
<td>Shekhawat et al 2013</td>
<td>LTA</td>
<td>2 mA</td>
<td>20 Minutes</td>
</tr>
<tr>
<td>Vanneste et al 2013</td>
<td>DLPFC</td>
<td>2 mA</td>
<td>20 Minutes</td>
</tr>
<tr>
<td>Vanneste et al 2013</td>
<td>Auditory cortex</td>
<td>1.5 mA</td>
<td>20 Minutes</td>
</tr>
</tbody>
</table>
Parameters

- Polarity – Anodal
- Intensity of Stimulation – 1 to 2 mA
- Duration of Stimulation – 10 to 20 Minutes
- Site of Stimulation – LTA/DLPFC
LTA & DLPFC Location

Nasion – point between the forehead and nose, at the junction of the nasal bones

Inion – most prominent point of the occipital bone

LTA – Halfway between C3 and T5

DLPFC – F3 and F4
Physiological basis of anodal tDCS

Effects of anodal tDCS on Neurons

During Stimulation
- Depolarization of resting membrane potential

After Effects
- Activation of NMDA receptors \([\uparrow \text{Duration}]\)
- Reduced GABAergic tone \([\uparrow \text{Magnitude}]\)

Neuromodulators
- Serotonin \([\uparrow \text{Magnitude \& Duration}]\)
- Catecholamines Acetylcholine \([\uparrow \text{Duration}]\)

Q2. What we don’t know?
localization of currents

- Current Flow (Skull, CSF, Subcutaneous fat, Gyri and Sulci)

- Current Orientation (Tangential vs. Radial)
Effect of tDCS on Tinnitus

- No mechanistic explanation
Q3. What should be done?
Electrophysiological measures

- Computational Neurostimulation models
- Rating scales (11) > Questionnaires (3)
- fMRI / EEG
Improve Focality (HD-tDCS)

Different protocols

- Combination of tDCS with others forms of intervention
- Multiple sites of Stimulation
Responders Vs. Nonresponders

- Hearing loss
- Functional connectivity and resting state
- Genetic biomarkers
Conclusion

- Past – Present – Future
- Potential tool for intervention
Suppliers

- NeuroConn, Germany
 http://www.neuroconn.de/profile/

- Soletrix medical, USA
 http://soterixmedical.com/tdcs

- Magstim, UK
 http://www.magstim.com/index

- Inomed, Germany
 http://www.inomed.com/

- Trademe/Online/Home made?
Thank You